Guidelines for Estimating Quantities of Ardex Flooring Products

Date, Wednesday, 29 July 2015

Introduction \& Scope

A common question Ardex Technical Services receives concerns the quantities and coverage of its flooring products, including levelling cements and primers. In this bulletin we will look at some examples of working out coverage for a range of Ardex products when used in typical applications.
Ardex literature specifies coverage for flooring cements based on a 1 mm layer spread over X square metres per 20 kg bag. This calculation produces a number called the coverage factor or CF, which varies for different products and will be used in the examples we shall look at.

This coverage factor is also numerically the same as the volume of material that results in the bucket after the product is mixed with water, or the latex liquid in the case of Arditex.

Case 1 - Flood Coating

The most common application is a flood or patch coating to produce a smooth flat surface over an area to a specified depth. The products typically used are Ardex K15M, K12N, K009, Arditex NA, K80, LQ92, K55*, K301 and the mortars A45 and A46*. The CF values are shown in the table -

Product	Mixed Volume in Bucket	Coverage Factor CF
Ardex K15M, K12N, Arditex NA, K80, A45, K250, K301	Approximately 12 litres	12
Ardex LQ92	Approximately 11.4 litres	11.4
Ardex A46* Ardex K55* Ardex K1*	Approximately 16 litres	16

(*Imported products are supplied in 25 kg bags)
Nominally Arditex NA has a volume close to 13, but for simplicity use CF12
Example 1) K15 in a commercial application
A typical installation would be to level an area in a supermarket for the installation of vinyl flooring. These areas are commonly rectangular in plan so the coverage area is floor length x width. We shall assume 50 m long and 20 m wide which is $1000 \mathrm{~m}^{2}$, to be laid to a thickness of 4 mm . How much K 15 would be required?

The number of bags of $\mathrm{K} 15=\left(\right.$ Area in $\mathrm{m}^{2} \times$ Thickness in mm$) \div \mathrm{CF}$
area $=1000 \mathrm{~m}^{2}$, thickness $=4 \mathrm{~mm}$ and CF for K15 $=12$
20 kg bags of K 15 required $=1000 \times 4 \div 12=334$ bags

Example 2) Ardex LQ92 to be used for levelling under tiles on a concrete verandah.
This is a common domestic type of installation for LQ92. The area to be covered is 5 m long and 3 m wide, and the thickness required is 6 mm . How much LQ92 will be required for this application?

The number of bags of LQ92 $=\left(\right.$ Area in $\mathrm{m}^{2} \times$ Thickness in mm$) \div$ CF area $=5 \mathrm{~m} \times 3 \mathrm{~m}=15 \mathrm{~m}^{2}$, thickness $=6 \mathrm{~mm}$ and CF for LQ92 $=11.4$
20 kg bags of $L Q 92$ required $=15 \times 6 \div 11.4=8$ bags

Case 2 - Bulk Filling

Where a deeper area has to be filled prior to topping, either a purpose made bulk fill product is used, or alternatively one of the self smoothing cements can be mixed with an aggregate. The premixed bulk fills have consistent designed coverage, but when using separate aggregates, applicators need to be aware that the mixed volumes will vary somewhat depending on the size and shapes of the aggregate gravel. The figures given in the table below are approximate only -

Product	Mixed Volume in Bucket	Coverage Factor CF
Ardex K005 Bulk Fill	Approximately 10.4 litres	10.4
Ardex K15, K12, or Arditex mixed with 20 kg of 2.5 mm aggregate 25 kg of 2.5 mm aggregate	20 kg approximately 18 litres	18
Ardex LQ92 mixed with 20kg of 2.5 mm aggregate litres	20 kg approximately 18 litres	20
25 kg approximately 20 litres	18	

Note Ardex supplies 25 kg bags of 2.5 mm aggregate so for Ardex supplied materials use the higher CF of 20.

Example 3) A bulk fill is required to provide a base for a K15 smoothing coat under plank flooring, where the newly laid concrete subfloor suffered severe rain damage and has been heavily scabbled down $\sim 25 \mathrm{~mm}$ to remove unsound material. The nominal depth of the fill is 20 mm and the smoothing coat is around 3.4 mm . The slab area to be filled is $40 \mathrm{~m}^{2}$. Either K15 and aggregate or K005 would be suitable bulk fills, the choice being based on cost vs drying times.
a) First choice is K 15 with added aggregate

Area $=40 \mathrm{~m}^{2}$, thickness $=20 \mathrm{~mm}$ and the CF $=20$
20 kg bags of $\mathrm{K} 15=40 \times 20 \div 20=40$ bags
For 20kg bag of K15, a 25 kg bag of aggregate is also required, so the total bags of material are 40 bags of K15 and 45 bags of aggregate.
b) The second choice is Ardex K005 which has a CF of 10.4

20 kg bags of $\mathrm{K005}=40 \times 20 \div 10.4=77$ bags
The final 3.4 mm K 15 smoothing coat is applied as a flood coat, and would require approximately 12 bags of material, the calculation being the same as Case 1.

Case 3 - Ramping

The amount of material required for ramps is based on the volume of a triangular prism. Ramps are commonly made from products with less flow or patch mortars such as Ardex A45, (aggregates can be used also). Bulk fill mixes such as Ardex K15 or Arditex with aggregate, K005, or LQ92 with coarse sand can also be used for this application. LQ92 is suitable for external ramps under tiles, and the bulk fill mixes are more appropriate for larger jobs. The following table gives mix volumes and CF values for ramping materials.

Product	Mixed Volume in Bucket	Coverage Factor CF
Ardex LQ92 mixed with 6.5 litres of 0.3mm sand	Approximately 15.5 litres	15.5
Ardex A45	Approximately 12 litres	12
Ardex K15, or Arditex mixed with 2.5mm aggregate	Approximately 18 or 20 litres	18 or 20
Ardex K005	Approximately 10.4 litres	10.4

The calculation for the volume of a triangular prism is shown in the following figure -

B - Base

The volume is ($0.5 \times$ Base) \times Height \times Length or $(0.5 \times B) \times H \times L$

Example 4) A nursing home requires a ramp to be installed from one room to another with a difference in height of 15 mm . The ramp needs to be at a low angle that will allow elderly residents to move with their walking aids. The ramp is going to be 1000 m long and 800 mm wide. How much Ardex A45 would be required to build up this ramp?
The number of bags of Ardex A45 is calculated by using the following method -
The ramp volume is $(0.5 \times B) \times H \times L$ where $B=1000 \mathrm{~m}$ or $1 \mathrm{~m}, L=800 \mathrm{~mm}$ or 0.8 m and $\mathrm{H}=15 \mathrm{~mm}$. The CF for Ardex A45 is 12 .

20 kg bags of A45 required $=(0.5 \times 1) \times 15 \times 0.8 \div 12=0.5$ bags
Example 5) A timber floored area requires a fall of 30 mm over a base of 2 m and a width of 3 m prior to laying of carpet. How much Arditex would be required to do this application?
Since Arditex has a recommended single application thickness of approximately 12 mm , an aggregate mix will be required. The surface could then be topped by 3 mm of Arditex (reducing the fill height to 27 mm), or a thick skim coat of Feather Finish if the bulk filled Arditex is ground or cut back. Remember that the aggregate reduces the ability of the smoothing cement to feather out so this estimate is approximate only.
The quantity of Arditex required is estimated as follows -
The ramp volume is $(0.5 \times B) \times H \times L$ where $B=2 m, L=3 m, H=30 \mathrm{~mm}$ and the CF for bulk filled Arditex is 20.

20 kg bags of Arditex required $=(0.5 \times 2) \times 3 \times 30 \div 20=4.5$ bags
For each 20 kg bag of Arditex, one 4.8 kg bottle of Arditex Latex and one 25 kg bag of 2 .
5 mm aggregate will be required.

Case 4 Estimating the amount of material required for a shower area

Showers areas with falls creates, a more complex problem again because of the shape, which is really a hyperbolic dish in most cases. Assuming that the shower base is square, the volume of material can be roughly determined by subtracting an area equivalent to that of an upside down rectangular pyramid from a simple rectangular prism which would be formed if the shower base were filled with screed to the fall depth.

In this case the maximum fall height is considered to be equivalent to the height of the inverted pyramid. The initial calculation is a simple one for a square prism, this would form the base area.

Volume is Length x Width x Height. ($\mathrm{LxW}=\mathrm{b}^{2}$ below)
The amount material that would need to be removed to model the sloped floor is derived from a rectangular pyramid with sides having the dimensions of the wall enclosure and the height is the fall from the drainage hole to the top of the screed.

Volume of a rectangular pyramid is

$$
V=1 / 3 b^{2} \times h
$$

It should be noted that the volume calculated for the screed is an approximation and is effected by the degree of curvature in the sloping base sides, but also whether the drainage hole is centrally located or not.

Example 6) A screed is required to fill a shower base $1 \mathrm{~m} \times 1 \mathrm{~m}$ square with a fall of 15 mm from the edges to the centrally located floor waste.
The initial rectangular prism is calculated as follows
$V=L \times W \times H$
Where $L=1 \mathrm{~m}$
$\mathrm{W}=1 \mathrm{~m}$
$\mathrm{H}=15 \mathrm{~mm}$ or $0.015 \mathrm{~m}(1 \mathrm{~mm}=1 / 1000 \mathrm{~m})$
$\therefore \mathrm{V}=1 \times 1 \times 0.015$
$V=0.015 \mathrm{~m}^{3}$ or 15 litres ($1 \mathrm{~m}^{3}=1000$ litres)

The inverted pyramidal volume to be removed is calculated as follows
$V=1 / 3 b^{2} \times h$
Where $b=1 \mathrm{~m}$
$\mathrm{h}=15 \mathrm{~mm}$ or 0.015 m
$\therefore V=1 / 3 \times 12 \times 0.015$
$V=0.005 \mathrm{~m}^{3}$ or 5 litres

The required screed volume is therefore the volume of the rectangular prism minus the pyramid
V prism $=15$ litres
\checkmark pyramid $=5$ litres
\therefore Screed $=15 \cdot 5$ litres $=10$ litres
With our standard screed mortar of CF 12 we would need around $1 \times 20 \mathrm{~kg}$ bag because $10 \div 12=0.83$.

CASE 5 - Skim Coating

The simplest process in floor finishing is a basic skim coating to smooth out the surface prior to laying a resilient floor. A skim coat need only be $0.25-0.5 \mathrm{~mm}$ thick depending on the surface roughness.

Product	Mixed Volume in Bucket/Bag	Coverage Factor CF
Ardex Feather Finish	$4.5 \mathrm{~kg} \cong 9$ litres $10 \mathrm{~kg} \cong 20$ litres	9
	20	

Example 7) A $100 \mathrm{~m}^{2}$ concrete floor requires a smoothing skim coat of Feather Finish approximately 0.5 mm thick prior to laying vinyl flooring. How many bags would be required?

The quantity required is calculate by Area x Thickness $\div \mathrm{CF}$
Area $=100 \mathrm{~m}^{2}$, thickness $=0.5 \mathrm{~mm}$ and CF for Feather Finish $=9$
4.5 kg bags of Feather Finish required $=100 \times 0.5 \div 9=6$ bags

Case 6 - Specialised Products

There are two specialised products which may be required for particular jobs.

Ardex A38

The first material is Ardex A38 which is a rapid cure screed. A mix contains 20kg of binder powder and 100kg of specially graded sand-gravel. The CF for A38 is 60 on a 120 kg batch (wet specific gravity ~ 2).

Ardex TerrazzoMicro

This is a feature floor product based on a binder and coloured aggregate. The materials are supplied in 20 kg bags and have a CF of 18.

CASE 7 - Priming
The coverages for Ardex primers are changed by the surface roughness and also surface porosity. The table below gives approximate coverages for Ardex primers.

Primer	Supplied Volumes	Surface	Dilution	Mixed Quantity in litres/kg	Coverage/litre	Coverage
Ardex P51 $5 \mathrm{~kg} \sim 5$ litres	Porous concrete	$2: 1$	15 litres	$\sim 3.3 \mathrm{~m}^{2}$	$\sim 50 \mathrm{~m}^{2}$	
	Highly porous concrete	$3: 1$	20 litres	$\sim 5 \mathrm{~m}^{2}$	$\sim 100 \mathrm{~m}^{2}$	
	Over 1:3	$1: 1$	10 litres	$\sim 1.5 \mathrm{~m}^{2}$	$\sim 15 \mathrm{~m}^{2}$	
Ardex P9 1 litre and 5 litres	Timber Some types of concrete	$1: 1$	2 litres 10 litres	$6 \cdot 10 \mathrm{~m}^{2}$	$6.10 \mathrm{~m}^{2}$ $24.40 \mathrm{~m}^{2}$	

Primer	Supplied Volumes	Surface	Dilution	Mixed Quantity in litres/kg	Coverage/ litre	Coverage
Ardex P82 Ultraprime	$\begin{gathered} 1 \mathrm{~kg} \mathrm{~A} \\ +1 \mathrm{~kg} \mathrm{~B} \end{gathered}$	Timber, Ceramic tiles, Moisture Barrier	Nil	2kg ~ 2 litres	$\begin{gathered} \sim 5.10 \mathrm{~m}^{2} \\ \text { (Nominally } \\ 7.5 \mathrm{~m}^{2} / \text { litre) } \end{gathered}$	$10.20 \mathrm{~m}^{2}$
	$\begin{gathered} 4 \mathrm{~kg} \mathrm{~A}+ \\ 4 \mathrm{~kg} \mathrm{~B} \end{gathered}$			8kg ~ 8 litres		$40.80 \mathrm{~m}^{2}$

Primer	Supplied Volumes	Surface	Dilution	Mixed Quantity in litres/kg	Coverage/ litre	Coverage
Ardex WPM300 Hydrepoxy with broadcast sand	4 or 10kg A	or 10 kg B	Concrete	Nil	4 or 20 litres $>700 \mathrm{gms}$ sand per sqm	$3 \mathrm{~m}^{2}$ (per coat)
12 or $60 \mathrm{~m}^{2}$						

Primer	Supplied Volumes	Surface	Dilution	Mixed Quantity in litres/kg	Coverage/ litre	Coverage
Ardex WPM368	$20 \mathrm{~kg} / 15$ litres	Concrete	Nil	NA	$3 \mathrm{~m}^{2}$ (per coat)	$22 \mathrm{~m}^{2}$ $(2$ coats)

Example 8) A porous concrete floor of $200 \mathrm{~m}^{2}$ area needs to be primed with Ardex P51 prior to laying K12 levelling cement. The surface has been lightly diamond ground. How much primer is required?
For porous concrete the Ardex P51 is diluted $2: 1$ and the coverage is $3.3 \mathrm{~m}^{2} /$ litre or $50 \mathrm{~m}^{2}$ per 5 kg bottle.

Bottles of P5 1 required = Area \div Coverage $=200 \div 50=4$ bottles
This is diluted with 40 litres of clean water.
Alternatively $\cdot 200 \mathrm{~m}^{2} \div 3.3 \mathrm{~m}^{2} /$ litre $=60$ litres of diluted P 51 which at $2: 1$ dilution equals 60 litres $\div 3=20$ litres or $4 \times 5 \mathrm{~kg}$ bottles.

Example 9) A floor has been coated with Ardex Moisture Barrier prior to laying of Ardex K15 levelling cement. The primer required is Ardex P82 and the area of the floor is $55 \mathrm{~m}^{2}$. How much P82 is required?
$\mathrm{Kg} /$ Litres of mixed P82 required $=$ Area \div Coverage $=55 \div 7.5=7.3$ litres or $1 \times 8 \mathrm{~kg} \mathrm{kit}$ comprising 4 kg of Part A and 4 kg of Part B.

Wastage

It is always a good idea to allow for material wastage which is bound to occur on a job site. A reasonable figure to allow for is 10%, but may be a below 5%. To allow for wastage, the final estimated figure has a percentage added to it.

For example - A job requires 250 bags of Ardex K15. Allowing 10\% wastage how much is required?
250 bags $\times 10 \%=250 \times 10 \div 100=25$ bags.
Experience of installations and product usage will allow installers to better tailor their estimate of wastages.

Conclusions

Determining coverages for floor levelers is not difficult and basically requires working out the volume of the area to topped. Once this volume is known the coverage factors for each product can be applied.

Primer coverage is simply working out the area to be primed and then applying the coverages for each type of primer. Remember that primer coverage is effected by surface roughness and porosity, and the more porous the surface, or extreme the surface texture, the greater the primer usage will be.

[^0]
[^0]: IMPORTANT
 This Technical Bulletin provides guideline information only and is not intended to be interpreted as a general specification for the application/installation of the products described. Since each project potentially differs in exposure/condition specific recommendations may vary from the information contained herein. For recommendations for specific applications/installations contact your nearest Ardex Australia Office.
 DISCLAIMER
 The information presented in this Technical Bulletin is to the best of our knowledge true and accurate. No warranty is implied or given as to its completeness or accuracy in describing the performance or suitability of a product for a particular application. Users are asked to check that the literature in their possession is the latest issue.
 Reason for Revision
 Revision of the coverage for WPM368
 Review Period
 24 months from issue
 NSW 029851 9100, QLD 073817 6000, VIC 03 8339-3100, SA/NT 088406 2500, WA 0892568600
 New Zealand (Christchurch) 6433843029
 Technical Services 1800-224-070
 Web: http://www.ardex.com, ://www.Ardexaustralia.com, email: technicalservices@ardexaustralia.com

