Ardex (Ardex Australia) Chemwatch: 4712-58 Version No: 4.1.1.1 Safety Data Sheet according to WHS and ADG requirements #### Chemwatch Hazard Alert Code: 3 Issue Date: 11/02/2016 Print Date: 29/07/2016 S.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Ardex LQ 92 | |-------------------------------|---------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Levelling of uneven concrete surfaces prior to the application of floor tiles with conventional ceramic tile adhesives. #### Details of the supplier of the safety data sheet | Registered company name | Ardex (Ardex Australia) | Ardex (Ardex NZ) | | |-------------------------|---|---|--| | Address | 20 Powers Road Seven Hills NSW 2147 Australia | rs Road Seven Hills NSW 2147 Australia 32 Lane Street Woolston Christchurch New Zealand | | | Telephone | 1800 224 070 | +64 3373 6928 | | | Fax | 1300 780 102 | +64 3384 9779 | | | Website | Not Available | Not Available | | | Email | Not Available | Not Available | | # Emergency telephone number | Association / Organisation | Not Available | Not Available | |-----------------------------------|---------------------------------|---------------| | Emergency telephone numbers | 1800 224 070 (Mon-Fri, 9am-5pm) | +64 3373 6900 | | Other emergency telephone numbers | Not Available | Not Available | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture # HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 3 | | 1 = Low
2 = Moderate | | Reactivity | 0 | | 3 = High | | Chronic | 2 | | 4 = Extreme | | Poisons Schedule Not Applicable Classification [1] Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category (respiratory tract irritation) Legend: 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | |--|--| |--|--| # Label elements **GHS** label elements Issue Date: 11/02/2016 Print Date: 29/07/2016 | SIGNAL WORD | DANGER | | |----------------------------|--|--| | Hazard statement(s) | | | | H315 | Causes skin irritation. | | | H318 | Causes serious eye damage. | | | H317 | May cause an allergic skin reaction. | | | H335 | May cause respiratory irritation. | | | Precautionary statement(s) |) Prevention | | | P271 | Use only outdoors or in a well-ventilated area. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P261 | P261 Avoid breathing dust/fumes. | | | P272 | P272 Contaminated work clothing should not be allowed out of the workplace. | | | Precautionary statement(s |) Response | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P310 | Immediately call a POISON CENTER or doctor/physician. | | | P362 | Take off contaminated clothing and wash before reuse. | | | P363 | Wash contaminated clothing before reuse. | | | Precautionary statement(s) |) Storage | | | P405 | Store locked up. | | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | | Precautionary statement(s) |) Disposal | | | P501 | Dispose of contents/container in accordance with local regulations. | | # **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ## Substances See section below for composition of Mixtures ## Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--------------------------| | 14808-60-7. | 30-60 | graded sand | | 65997-15-1 | 10-30 | portland cement | | 471-34-1 | 10-30 | calcium carbonate | | 65997-16-2 | <10 | calcium aluminate cement | | 7778-18-9 | <10 | calcium sulfate | | Not Available | <10 | additives, unregulated | # **SECTION 4 FIRST AID MEASURES** # Description of first aid measures | 2000-ipitoli of mot did modeli of | | |-----------------------------------|--| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. Chemwatch: 4712-58 Page 3 of 9 Version No: 4.1.1.1 Ardex LQ 92 Issue Date: 11/02/2016 Print Date: 29/07/2016 # **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - ▶ There is no restriction on the type of extinguisher which may be used. - Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture | Fire Incompatibility | None known. | | |--|-------------|--| | Advice for firefighters | | | | Fire Fighting | | | | Fire/Explosion Hazard Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of; sulfur oxides (SOx) silicon dioxide (SiO2) metal oxidesMay emit poisonous fumes. May emit containers | | | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | octions and material for contaminant and clouming ap | | |--|---| | Minor Spills | Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. | | Major Spills | Moderate hazard. • CAUTION: Advise personnel in area. • Alert Emergency Services and tell them location and nature of hazard. • Control personal contact by wearing protective clothing. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** | Precautions for | safe | handling | |-----------------|------|----------| |-----------------|------|----------| | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. | |-------------------|--| | Other information | Keep dry. Store under cover. Protect containers against physical damage. Observe manufacturer's storage and handling recommendations contained within this SDS. | # Conditions for safe storage, including any incompatibilities | Conditions for sale storag | e, including any incompatibilities | |----------------------------|--| | Suitable container | Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag. NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer. | | Storage incompatibility | WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively. The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive. Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid contact with copper, aluminium and their alloys. | # **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** # **Control parameters** # OCCUPATIONAL EXPOSURE LIMITS (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------|---|--------------|------------------|------------------|------------------| | Australia Exposure Standards | graded sand | Silica - Crystalline: Quartz (respirable dust) / Quartz (respirable dust) | 0.1
mg/m3 | Not
Available | Not
Available | Not
Available | Page 4 of 9 Ardex LQ 92 Issue Date: 11/02/2016 Print Date: 29/07/2016 | Australia Exposure Standards | portland cement | Portland cement | 10 mg/m3 | Not
Available | Not
Available | Not
Available | |------------------------------|----------------------|-------------------|----------|------------------|------------------|------------------| | Australia Exposure Standards | calcium
carbonate | Calcium carbonate | 10 mg/m3 | Not
Available | Not
Available | Not
Available | | Australia Exposure Standards | calcium sulfate | Calcium sulphate | 10 mg/m3 | Not
Available | Not
Available | Not
Available | #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------|---|-------------|-------------|-------------| | graded sand | Silica, crystalline-quartz; (Silicon dioxide) | 0.025 mg/m3 | 0.025 mg/m3 | 0.025 mg/m3 | | calcium carbonate | Limestone; (Calcium carbonate; Dolomite) | 27 mg/m3 | 27 mg/m3 | 1300 mg/m3 | | calcium carbonate | Carbonic acid, calcium salt | 45 mg/m3 | 210 mg/m3 | 1300 mg/m3 | | calcium sulfate | Calcium(II) sulfate dihydrate (1:1:2) | 10 mg/m3 | 10 mg/m3 | 21 mg/m3 | | calcium sulfate | Calcium sulfate anhydrous; (Drierite; Gypsum; Plaster of Paris) | 30 mg/m3 | 330 mg/m3 | 2000 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |--------------------------|-----------------------|---------------| | graded sand | N.E. mg/m3 / N.E. ppm | 50 mg/m3 | | portland cement | N.E. mg/m3 / N.E. ppm | 5,000 mg/m3 | | calcium carbonate | Not Available | Not Available | | calcium aluminate cement | Not Available | Not Available | | calcium sulfate | Not Available | Not Available | | additives, unregulated | Not Available | Not Available | #### **Exposure controls** # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. # Personal protection # Eye and face protection - ► Safety glasses with side shields. - ▶ Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. #### Skin protection # See Hand protection below # NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. # Hands/feet protection The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - ▶ polychloroprene. - ► nitrile rubber. - ▶ butyl rubber. # Body protection See Other protection below # Other protection Overalls.P.V.C. apron. Thermal hazards Not Available ▶ Barrier cream. # Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | Issue Date: 11/02/2016 Print Date: 29/07/2016 * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - ▶ Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Grey powder; insoluble in water. Loose Bulk Density: 1.3 appr | ox. | | |--|---|---|----------------| | Physical state | Divided Solid | Relative density (Water = 1) | 2.6 approx. | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Applicable | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects | Inhaled | The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles. | |--------------|---| | Ingestion | The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. | | Skin Contact | The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. The material may accentuate any pre-existing dermatitis condition Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts. | Issue Date: 11/02/2016 Print Date: 29/07/2016 # Ardex LQ 92 | | Open cuts, abraded or irritated skin should not be exposed to this material
Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use
of the material and ensure that any external damage is suitably protected. | | | | | |-----------------------------|--|---|--|--|--| | Eye | If applied to the eyes, this material causes severe eye damage. | | | | | | Chronic | Cement contact dermatitis (CCD) may occur when contact shows an alle chromates (chromate compounds) present in trace amounts in some ceme dermatitis can be characterised by fissures, eczematous rash, dystrophic necrosis. Overexposure to respirable dust may cause coughing, wheezing, difficulty vital lung capacity, chest infections Repeated exposures, in an occupational setting, to high levels of fine-divice | on in some persons compared to the general population. | | | | | | TOXICITY | IRRITATION | | | | | Ardex LQ 92 | Not Available | Not Available | | | | | buse belows | TOXICITY | IRRITATION | | | | | graded sand | Not Available | Not Available | | | | | | TOXICITY | IRRITATION | | | | | portland cement | Not Available | Not Available | | | | | | TOXICITY | IRRITATION | | | | | calcium carbonate | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 0.75 mg/24h - SEVERE | | | | | 531514111 531 5511415 | Oral (rat) LD50: >2000 mg/kg ^[1] | Skin (rabbit): 500 mg/24h-moderate | | | | | | , , | | | | | | calcium aluminate cement | TOXICITY Not Available | IRRITATION Not Available | | | | | | Not Available | Not Available | | | | | calcium sulfate | TOXICITY | IRRITATION | | | | | | Oral (rat) LD50: >1581 mg/kg ^[1] | Not Available | | | | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | | | PORTLAND CEMENT | a cell-mediated (T lymphocytes) immune reaction of the delayed type. Oth reactions. The significance of the contact allergen is not simply determine for contact with it are equally important. A weakly sensitising substance w | not be specific to this product. arely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves the rallergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune do by its sensitisation potential: the distribution of the substance and the opportunities hich is widely distributed can be a more important allergen than one with stronger clinical point of view, substances are noteworthy if they produce an allergic test | | | | | CALCIUM CARBONATE | The material may produce severe irritation to the eye causing pronounced conjunctivitis. The material may cause skin irritation after prolonged or repeated exposul scaling and thickening of the skin. No evidence of carcinogenic properties. No evidence of mutagenic or tera | re and may produce on contact skin redness, swelling, the production of vesicles, | | | | | CALCIUM ALUMINATE
CEMENT | No data of toxicological significance identified in literature search. | | | | | | CALCIUM SULFATE | Gypsum (calcium sulfate dihydrate) is a skin, eye, mucous membrane, and respiratory system irritant. Early studies of gypsum miners did not relate pneumoconiosis with chronic exposure to gypsum. Other studies in humans (as well as animals) showed no lung fibrosis produced by natural dusts of calcium sulfate except in the presence of silica. However, a series of studies reported chronic nonspecific respiratory diseases in gypsum industry workers in Gacki, Poland. Unlike other fibers, gypsum is very soluble in the body; its half-life in the lungs has been estimated as minutes. In four healthy men receiving calcium supplementation with calcium sulfate (CaSO4-1/2H2O) (200 or 220 mg) for 22 days, an average absorption of 28.3% was reported. Several feeding studies in pigs on the bioavailability of calcium in calcium supplements, including gypsum, have been conducted. The bioavailability of calcium in gypsum was similar to that for calcitic limestone, oyster shell flour, marble dust, and aragonite, ranging from 85 to 102%. In mice, the i.p. and intragastric LD50 values were 6200 and 4704 mg/kg, respectively, for phosphogypsum (98% CaSO4-H2O). For Plaster of Paris, the values were 4415 and 5824, respectively. In rats, an intragastric LD50 of 9934 mg/kg was reported for phosphogypsum Repeat dose toxicity: In a study of 241 underground male workers employed in four gypsum mines in Nottinghamshire and Sussex for a year (November 1977), results of chest X-rays, lung function tests, and respiratory systems suggested an association of the observed lung shadows with the higher quartz content in dust rather than to gypsum; the small round opacities in the lungs were characteristic of silica exposure. Prophylactic examinations of workers in a gypsum extraction and production plant (dust concentration exceeded TLV 2.5- to 10-fold) reported no risk of pneumoconiosis due to gypsum exposure, while another study of gypsum manufacturing plant workers reported that chronic occupational exposure to gypsum dust had resulted in pulm | | | | | Chemwatch: 4712-58 Page 7 of 9 Issue Date: 11/02/2016 Version No: 4.1.1.1 Print Date: 29/07/2016 Ardex LQ 92 surrounding tissues. In another study, after i.p. injection of gypsum (2 cm3 of a 5 or 10% suspension in saline) into guinea pigs, which were sacrificed at intervals up to 180 days, most of the dust was found distributed in the peritoneum of the anterior abdominal wall. Gypsum dust produced irregular and clustered nodules, which decreased in size over time. Direct administration of WTC PM2.5 [mostly composed of calcium-based compounds, including calcium sulfate (gypsum) and calcium carbonate (calcite)] (10, 32, or 100 µg) into the airways of mice produced mild to moderate lung inflammation and airway hyperresponsiveness at the high dose. [It was noted that WTC PM2.5 is composed of many chemical species and that their interactions may be related with development of airway hyperresponsiveness.] In female SPF Wistar rats intratracheally (i.t.) instilled with anhydrite dust (35 mg) and sacrificed three months later, an increase in total lipid or hydroxyproline content in the lungs was not observed compared to controls. In inhalation (nose-only) experiments in which male F344 rats were exposed to calcium sulfate fiber aerosols (100 mg/m3) for six hours per day, five days per week for three weeks, there were no effects on the number of macrophages per alveolus, bronchoalveolar lavage fluid (BALF) protein concentration, or BALF g-glutamyl transpeptidase activity (g-GT). Following three weeks of recovery, nonprotein thiol levels (NPSH), mainly glutathione, were increased in animals. In follow-up experiments, rats were exposed to an aerosol of anhydrous calcium sulfate fibers (15 mg/m3) or a combination of milled and fibrous calcium sulfate (60 mg/m3) for the same duration. Calcium levels in the lungs were similar to those of controls; however, gypsum fibers were detected in the lungs of treated animals. Significant increases in NSPH levels in BALF were observed in rats killed immediately after exposure at both doses and in recovery group animals at the higher dose. At 15 mg/m3, almost all NPSH was lost in macrophages from all treated animals (including those in recovery), but a significant decrease in extracellular g-GT activity was seen only in recovery group animals. Overall, the findings were "considered to be non-pathological local effects due to physical factors related to the shape of the gypsum fibers and not to calcium sulphate per se." Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks resulted in no deaths or significant body weight changes in female Syrian hamsters compared to controls. Inflammation (specifically, chronic alveolitis with macrophage and neutrophil aggregation) was observed in the lung. In guinea pigs, inhalation of calcined gypsum dust (1.6 x 104 particles/mL) for 44 hours per week in 5.5 days for two years, followed with or without a recovery period of up to 22 months, produced only minor effects in the lungs. There were 12 of 21 deaths over the entire experimental period. These were due to pneumonia or other pulmonary lesions; however, no significant gross signs of pulmonary disease or nodular or diffuse pneumoconiosis became significant. Beginning near 11 months, pigmentation and atelectasis were seen. During the recovery period, four of ten guinea pigs died; two died of pneumonia. Pigmentation continued in most animals but not atelectasis. Low-grade chronic inflammation, occurring in the first two months, also disappeared. Mercury emissions controls on coal-fired power plants have increased the likelihood of the presence of mercury in synthetic gypsum formed in wet flue gas desulfurisation (FGD) systems and the finished wallboard produced from the FGD gypsum. In a study at a commercial wallboard plant, the raw FGD gypsum, the product stucco (beta form of CaSO4-1/2H2O), and the finished dry wallboard each contained about 1 ug Hg/g dry weight. Total mercury loss from the original FGD gypsum content was about 0.045 g Hg/ton dry gypsum processed Synergistic/Antagonistic Effects: In rats, i.t. administration of anhydrite (5-35 mg) successively and simultaneously with quartz reduced the toxic effect of quartz in lung tissue. This protective effect on quartz toxicity was also seen in guinea pigs; calcined gypsum dust prevented or hindered the development of fibrosis. Natural anhydrite, however, increased the fibrogenic effect of cadmium sulfide in rats. Additionally, calcined gypsum dust had a stimulatory effect on experimental tuberculosis in guinea pigs. Cytotoxicity: In Syrian hamster embryo cells, gypsum (up to 10 ug/cm2) did not induce apoptosis. Negative results were also found in mouse peritoneal macrophages (tested at 150 ug/mL gypsum dust) and in Chinese hamster lung V79-4 cells (tested up to 100 ug/mL). Carcinogenicity: In female Sprague-Dawley rats, i.p. injection of natural anhydrite dusts from German coal mines (doses not provided) induced granulomas; whether gypsum was the causal factor was not established. In Wistar rats, four i.p. injections of gypsum (25 mg each) induced abdominal cavity tumours, mostly sarcomatous mesothelioma, in 5% of animals; first tumour was seen at 546 days. In a subsequent experiment using the same procedure, female Wistar rats exhibited the first tumour at 579 days after the last injection. Mean survival of the tumour-bearing rats (5.7% of test group) was 583 days, while mean survival of the test group was 587 days. Tumour types seen were a sarcoma having cellular polymorphism, a carcinoma, and a reticulosarcoma. Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks produced tumours in three of 20 female Syrian hamsters observed two years later. An anaplastic carcinoma was found in the heart, and one dark cell carcinoma was seen in the kidney. Two tumours of unspecified types were observed in the rib. In guinea pigs, inhalation of gypsum (doses not provided) for 24 months produced no lung tumours. In rats, i.t. administration of gypsum (doses not provided in abstract) from FGD for up to 18 months produced no arterial blood gas changes or indications of secondary heart damage as compared to controls. In another study, a single i.t. dose (25 mg) of flue gas gypsum dust did not produce a pathological reaction when observed for up to 18 months. There were also no signs of developing granuloma of fibrosis of the lungs. Lead quickly accumulated in the femur after injection but was eliminated during the observation period. In the Ames test, the flue gas gypsum dust was negative. Genotoxicity: Calcium sulfate (up to 2.5%) was negative in Salmonella typhimurium strains TA1535, TA1537, and TA1538 and in Saccharomyces cerevisiae strain D4 with and without metabolic activation. **Developmental toxicity:** In pregnant mice, rats, and rabbits, daily oral administration of calcium sulfate (16-1600 mg/kg bw) beginning on gestation day 6 up to 18 produced no effects on maternal body weights, maternal or foetal survival, or nidation; developmental effects were also not seen. # GRADED SAND & PORTLAND CEMENT No significant acute toxicological data identified in literature search. # PORTLAND CEMENT & CALCIUM CARBONATE & CALCIUM ALUMINATE CEMENT & CALCIUM SULFATE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. | Acute Toxicity | 0 | Carcinogenicity | 0 | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ✓ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | ✓ | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: X - Data available but does not fill the criteria for classification — Data required to make classification available Data Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** ## Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------|----------|--------------------|---------|------------|--------| | calcium carbonate | LC50 | 96 | Fish | >56000mg/L | 4 | Issue Date: 11/02/2016 Print Date: 29/07/2016 | calcium carbonate | EC50 | 72 | Algae or other aquatic plants | >14mg/L | 2 | |--------------------------|--------------------------|-----|--|---------------|---| | calcium carbonate | NOEC | 72 | Algae or other aquatic plants | 14mg/L | 2 | | calcium aluminate cement | LC50 | 96 | Fish | >100mg/L | 2 | | calcium aluminate cement | EC50 | 24 | Crustacea | 6.4mg/L | 2 | | calcium aluminate cement | EC50 | 48 | Crustacea | 5.4mg/L | 2 | | calcium aluminate cement | EC50 | 72 | Algae or other aquatic plants | 3.6mg/L | 2 | | calcium aluminate cement | NOEC | 72 | Algae or other aquatic plants | 2.6mg/L | 2 | | calcium sulfate | EC50 | 96 | Algae or other aquatic plants | 105.72278mg/L | 3 | | calcium sulfate | NOEC | 504 | Crustacea | 360mg/L | 4 | | calcium sulfate | LC50 | 96 | Fish | >79mg/L | 2 | | calcium sulfate | EC50 | 72 | Algae or other aquatic plants | >79mg/L | 2 | | Legend: | Aquatic Toxicity Data (E | | egistered Substances - Ecotoxicological Info
pase - Aquatic Toxicity Data 5. ECETOC Aqua
Data 8. Vendor Data | | | DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------|-------------------------|------------------| | calcium sulfate | HIGH | HIGH | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-----------------|------------------------| | calcium sulfate | LOW (LogKOW = -2.2002) | #### Mobility in soil | Ingredient | Mobility | |-----------------|-------------------| | calcium sulfate | LOW (KOC = 6.124) | # **SECTION 13 DISPOSAL CONSIDERATIONS** ## Waste treatment methods - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Product / Packaging Where in doubt contact the responsible authority. disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal - Bury residue in an authorised landfill. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 TRANSPORT INFORMATION** # Labels Required | · | | |------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** Safety, health and environmental regulations / legislation specific for the substance or mixture # GRADED SAND(14808-60-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs #### PORTLAND CEMENT(65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Issue Date: 11/02/2016 Print Date: 29/07/2016 Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) #### CALCIUM ALUMINATE CEMENT(65997-16-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) #### CALCIUM SULFATE(7778-18-9) IS FOUND ON THE FOLLOWING REGULATORY LISTS | Australia Exposure Standards | Australia Inventory of Chemical Substances (AICS) | |----------------------------------|--| | National Inventory | Status | | Australia - AICS | Y | | Canada - DSL | Y | | Canada - NDSL | N (portland cement; calcium sulfate; calcium aluminate cement; graded sand) | | China - IECSC | Y | | Europe - EINEC / ELINCS /
NLP | Y | | Japan - ENCS | N (portland cement) | | Korea - KECI | Y | | New Zealand - NZIoC | Y | | Philippines - PICCS | N (portland cement; calcium aluminate cement) | | USA - TSCA | Y | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brockets). | N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) #### **SECTION 16 OTHER INFORMATION** # Other information #### Ingredients with multiple cas numbers | Name | CAS No | | |--------------------------|---|--| | calcium carbonate | 471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 72608-12-9, 878759-26-3, 63660-97-9, 459411-10-0, 198352-33-9, 146358-95-4 | | | calcium aluminate cement | 65997-16-2, 12042-68-1 | | | calcium sulfate | 7778-18-9, 10101-41-4 | | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor TLV: Threshold Limit Value NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.